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A test of piezoelectricity in the chloride at the tem- 
perature of liquid nitrogen with an apparatus similar to 
that  designed by Stokes (1947) was negative. However, 
no conclusion could be drawn, since either the piezo- 
electric effect might be too slight to detect, or the piezo- 
electric effects of many small domains might not be 
detectable in our apparatus. A chloride crystal re- 
mained dark when viewed between crossed polaroids 
along the c axis as the temperature was lowered through 
the transition interval. Since the low-temperature 

structure is definitely monoclinic, one may conclude 
either than the change in optical properties is slight. 
or that  the domains are submicroscopic in size. 
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A number of the fibrous proteins show small-angle diffraction of X-rays lacking evidence of the 
full complement of lattice translations characterizing normal crystalline order. Criteria for the 
judgment of the number of ordered dimensions from diffraction phenomena are particularly simple at 
small angles and are derived herein. These involve examiuation of diffraction shapes and the dis- 
placement of diffractions with tilting of the fibrous specimen from the normal perpendicular relation- 
ship to the incident beam. 

Simple geometrical considerations suffice to show qualitatively the properties of the disk- or ro d- 
like shapes characterizing diffracting arrays or nets in reciprocal space. These diffractors are 
usually conceived as of unllmited extension along ordered dimensions, but very thin transverse 
thereto. In practical cases the properties of the reciprocal-space disks and rods account for the 
diffraction broadening caused by reduction in particle dimensions along axes of order, or the 
sharpening effect of increased size along non-ordered directions factors which complicate the 
simple criteria mentioned above. While disk or rod dimensions are normally independent of diffraction 
indices, this does not hold when the diffractors are internally distorted. 

I n t r o d u c t i o n  

Certain protein fibers which have been investigated by 
means of small-angle X-ray diffraction (Bear, 1944 a, b, 
1945) and electron microscopy (Schmitt, Hall & Jakus, 
1942; Hall, Jakus & Schmitt, 1945) showed evidence 
of periodic structure along only one (collagen) or two 
(paramyosin) fibril dimensions. These results gave rise 
to the question as to whether the remaining dimensions 
in each case did not, in fact, possess long-range order 
or whether the experimental evidence was deficient. 
The present paper considers the problem of obtaining 
definitive evidence for the number of dimensions 
possessing order, as independently as possible of a 
failure of intensity in the diffractions necessary for 
demonstration of order along a doubtful fibril direction. 

~[ This paper represents a partial report on research spon- 
sored by the Office of the Quartermaster General, Research 
and Development Branch, under Project no. 130-46 on 
'Determination of the Nature and Properties of Skin Struc- 
ture', under direction of the Leather Subcommittee of the 
National Research Council Committee on Quartermaster 
Problems. 

Present address: Camp Detrick, Frederick, Maryland, 
U.S.A. 

Systems possessing one- and two-dimensional order 
are well known (cf. the linear arrays of halogen atoms 
described by West (1947) and the planar nets of carbon 
black discussed by Warren (1941) and by Biscoe & 
Warren (1942)). Indeed, Nowacki (1946) has attempted 
a rough classification, according to the number of axes 
of order, for substances yielding discontinuous small- 
angle diffraction. I t  has also been understood for some 
time that  diffracting arrays and nets possess shape 
transforms resulting in disk- or rod-like distributions 
of intensity about each peak in reciprocal space (see 
Ewald, 1940}. These concepts have not often been 
required, however, so that  most accounts are concerned 
with the results of the application of the reciprocal 
lattice to three-dimensional crystals. 

Reduction in the number of axes of order is not the 
only type of order-deficiency that  may be encountered 
in fibrous systems. James (1948), in particular, noted 
some of these, emphasizing the importance of the 
diffraction aspects of thin linear arrays or limited im- 
perfect aggregates of these in the study of fibers. 
Diffraction shapes are influenced by the degree of 
extension in space of both ordered and non-ordered 
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dimensions of the diffTactor, as well as by internal dis- 
tortions of the structure. Consequently, in deriving 
criteria for the systematic determination of axes of 
order, as is done below, it is necessary to keep in mind 
these additional factors. 

The discussion starts with the case of a hnear array 
of equivalent nodes, developing therefrom examples 
with higher order. Because the results are to be applied 
to protein fibers, certain conventions may be adopted 
at the outset: inspection of the known facts regarding 
small-angle diffraction by these systems discloses that  
the bulk fiber axis can probably always be considered 
as paralleling one lattice axis of each of the individual 
ultra-microscopic diffracting elements (fibrils), and 
that this axis is nearly orthogonal to other transverse 
structural axes, since prominent diffraction row lines 
are alway approximately normal to layer lines on the 
fiber patterns. Consequently, for the present purposes 
it is sufficient to employ with three-dimensionally 
ordered fibrils the conventional monoclinic elements 
a 0, b 0, c o and/? for unit-cell description. I t  is convenient 
to discard c o and/? for two-dimensional cases, and in 
addition a 0 may be dropped for one-dimensional 
systems. In all cases b 0 remains the structure period 
along the fibril axis. 

Representation of one-dimensional 
order in reciprocal space 

Fig. 1 shows a linear array of nodes extending along Uy. 
An incident X-ray beam arriving in the direction A U 
continues toward O. I t  also gives rise to diffracted 
beams, one of which is shown directed toward P. In 
the figure the angles of incidence and of diffraction, 
0 and 0~, are defined in a way most nearly equivalent 
to the customary usage in applications to diffraction 
by a set of planes (one of which is represented by the 
broken line) normal to the translation b 0. In the case of 
the linear array, however, 0 and 0~ need not be equal, 
since the only requirement for diffraction is that  radia- 
tion through adjacent nodes shall experience a path 
difference, BC+ CD, which is a multiple of the wave- 
length A. Consequently, the diffraction condition is 
readily seen to be the single Laue expression 

b0(sin 0 + sin 0~) = kA, 

where k is any positive or negative integer specifying 
a given diffraction. The diffractions emerge as cones 
whose common axis is that  of the array. 

Fig. 2 provides a simple transition from the geo- 
metry of Fig. 1 to the concepts involved in the use of 
reciprocal space for consideration of the diffraction of 
the array. Symbols repeated from Fig. 1 have the same 
significance. The circle represents the sphere of unit 
radius, CO, commonly designated as the sphere of 
reflection. @CP is a typical conical diffraction of the 
array, P and @ being on the sphere. 0 is the origin of 
reciprocal space, and the axis Oy* is parallel to the axis 
of the array Cy. The plane @PR, normal to Oy*, is to 

represent the kth diffraction in reciprocal space. Since 
OR = OF + EP, and the last two distances are, respec- 
tively, sin 0 and sin 0~, it follows from the diffraction 
condition given above that  OR = kA/b o. The array will 
be appropriately represented by a set of parallel planes 
in reciprocal space, normal to Oy* with separation A/b o. 
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Fig. 1. I l lus t ra t ing  diffraction by  a l inear a r r a y  
of  equivalent  nodes spaced b o apart .  
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Fig. 2. The  reciprocal-space concept  applied 
to a one-dimensional  diffractor.  

The converse of this, namely, that  a set of diffracting 
planes of separation b 0 may be represented in reciprocal 
space by an array of points, orthogonal to the planes 
and of separation b 0, is the more familiar proposition 
encountered in crystallography. Since there is no need 
to postulate structure transverse to b 0 in the diffracting 
planes, both of the above two propositions apply to 
extreme cases of one-dimensional order. The linear array 
of nodes is an example with extreme thinness transverse 
to the axis of order, and the set of structureless planes 
possesses extreme thickness transverse to order. 

A process may be imagined in which the nodes of 
the diffracting array are continuously drawn out in 
space normal to the internodal axis to produce struc- 
tures intermediate between these two extremes. 

z5-2 
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During the continuous nodal exlaansion thus imagined 
the reciprocM-space planes shrink through disk-like 
stages, becoming finally spot-like concentrations when 
the diffracting nodes become infinite planes. This simple 
conceptual process discloses qualitatively that  the 
general representation in reciprocal space for a one- 
dimensionally ordered system may be described as a 
set of 'disks' .  Not only is the separation between the 
disks (A/b0) reciprocal to the spacing of the diffracting 
system (bo), but their diameters are reciprocal to dimen- 
sions of the diffracting system transverse to order. 
Disk thickness (along Oy*) depends on the number of 
internode segments constituting the axial length of the 
difh'aeting system, the disks being thinnest when the 
length of the system is greatest. 

Fig. 3. Use of the 'plane of reflection' 
at small diffraction angles. 

The following additional properties of disks seem 
fairly obvious from general conceptions regarding 
diffraction phenomena. I f  the nodal expansion process 
described above is carried out so that  rotational sym- 
metry is maintained about the axis of the diffracting 
array, and so that  all diameters of the resulting cylinder 
are equal, all of the reciprocal-array disks will have 
equal diameters which are therefore independent of 
index, k. Small random fluctuations of internodal 
separations (b0) result in diminishing the effective 
coherent length of the diffracting system scattering to 
each disk; disks of highest absolute k are affected most 
profoundly, so that  disk thicknesses increase with k. 
Small random columnar displacements (along axial 
directions) of material placed at transverse locations in 
the diffracting system, without disturbance of the b 0 
periodicity within each colnmn~ reduce the effective 
diameters of the system for coherent diffraction; again 
disks of largest absolute k are most influenced, so that  
disk diameters increase with k. 

At small diffraction angles A is much smaller than b 0 
a n d  the reciprocal-space disks for reasonable values of 
k lie close to O. The sphere of reflection becomes essen- 
tially a plane of reflection through 0 normal to the 
incident beam. Fig. 3 represents the simplified small- 

angle case, although the diffraction angle, Ok= 0+  0~, 
is somewhat exaggerated. The vertical line OP now 
indicates the section of the sphere of reflection near 0. 
Because of the unit value of CO, positions in the plane 
of reflection give directly the Bernal co-ordinates ~ and 

measuring the vertical and horizontal angular com- 
ponents (the axis for the latter extending normal to the 
figure plane) of any direction along which diffraction is 
sent to a registering film. Note that  the angle R O P  now 
equals the previously defined 0 (see Fig. 2), which may 
be termed the angle of tilt, since it measures the depar- 
ture from the usual perpendicular incidence of the 
incident X-ray beam upon the axis of the diffracting 
system. 

The kth reciprocal-space disk intersects the figure 
along R P  normal to Oy* at OR = kh/b o. I t  follows that  
the vertical angular component of the kth disk, ~k, is 

~ = kA/b o cos 0, (1) 

which defines a set of observable parallel layer lines in 
the plane of reflection normal to its meridional (~) axis. 

Two ways of exploring the reciprocal-space disks are 
available: With a highly colllm ated incident beam, per- 
penclicular incidence (0=0) yields on the diffraction 
pattern a view of sections through the center of the 
disks taken parallel with the ~ axis. Variations of 0 
accomplished by tilting the specimen for successive 
photographs yield, at the pattern meridians, successive 
views of disk locations in the plane of incidence (that 
of all previous figures). In this way mutually orthogonal 
sections through each disk may be viewed. However, 
because of the rotational randomness generally en- 
countered with the fibrillar elements of a fiber, whose 
common axial direction is the only one controllable with 
respect to orientation, both experimental approaches 
furnish equivalent results concerning rotationally 
averaged disks. 

A theoretical, but rarely practical, limitation to the 
above procedure would be encountered with diffracting 
systems whose diameters transverse to order are very 
large. In these cases the structure is essentially a single 
set of Bragg planes, which should diffract only when 
0 = kA/2b0, which is the simplified Bragg law at small 
angles. This difficulty arises because the reciprocal- 
space disks are then so restricted in diameter that  the 
curvature of the sphere of reflection cannot be neglected. 

Otherwise, the restrictions placed upon equation (1) 
demand on]ythatqb k be small and not that  0 or 0~ be also 
small separately. Accordingly, when the diffracting 
structures are of sufficiently small thickness transverse 
to order, the present approximations are valid at much 
larger angles of tilt than the Bragg angles corresponding 
to the spacings involved. 

N e t s  a n d  latt ices  

Knowledge of the properties of the disk-like repre- 
sentations of one-dimensional diffracting systems is of 
importance in studying objects possessing even higher 



R I C H A R D  S. B E A R  AND O R V I L  E. A. B O L D U A N  233 

order, since in such cases the structure can be con- 
sidered as composed of two or three sets of linear arrays. 
Each of the two sets of linear nodal arrays comprising 
a two-dimensional net, and corresponding to the two 
directions of extension in the plane of the net, may be 
represented in reciprocal space by a set of planes as 
shown in the last section. I t  follows that the parallel 
linear intersections (' rods' below) of the two reciprocal- 
plane sets constitute the reciprocal-space representa- 
tion of the actual two-dimensional net, as shown in 
Fig. 4. 
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(a) (b) 
Fig. 4. Comparison of a diffracting ne t  (a) with its reciprocal 

space representat ion (b), which consists of a ne t  o f ' r o d s ' .  
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Fig. 5. The inner l imit ing cylinder produced by rotat ion of 
the  rods of a not  row-line specified by h. The solid areas 
represent  sections through the  doughnut- l ike layers pro- 
duced in reciprocal space by rotat ion of individual  rods, 
wi th  ordinates indicating density (intensity) at  corre- 
sponding radial positions in the  layers. 

Diffraction occurs whenever the reciprocal-space rods 
cross the plane of reflection. I t  is impossible, however, 
with fibrous systems to observe these simple inter- 
sections, since the diffraction diagrams obtained are 
essentially the result of rotating the ultramicroscopic 
diffracting elements around the y or fiber axis. As shown 
in Fig. 5, because of this rotation, all reciprocal-space 
rods of constant absolute h will form a cylinder of radius 

hh/ao, from which these rods are excluded during the 
rotation and which may be called the inner limiting 
cylinder. 

Fig. 6 depicts one such cylinder in relation to the 
plane of reflection at angle of tilt 0. Intersection of 
cylinder and plane occurs at a limiting ellipse whose 
equation is ~2+ ~2 sin" t~ = (h~/ao) 2. Layer lines meet the 
ellipse at ~k values given by equation (1), so that  the 
relation 

\ a o / - -  \ be ] (2) 

indicates the ~ co-ordinate of the hth ellipse at the 
level of the kth layer line. 
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Fig. 6. When  the  axis of the  l imiting cylinder (Fig. 5) is t i l ted 
out  of the  plane of reflection, cylinder and plane intersect 
to form an ellipse, a round which diffraction discontinuities 
mus t  remain unti l  collapsed to the  meridian by sufficient 
tilting. 

As uniform rotation occurs, the reciprocal-space rods 
linger longest in the plane of reflection at positions 
distributed next to the ellipse. Consequently, equations 
(1) and (2) define positions corresponding to the most 
intense diffraction. Along each layer line, and even on 
layer lines beyond those intersecting a row-line ellipse, 
diffracted intensity falls off rapidly in directions away 
from the meridional line. The general description of the 
asymmetric (hk) diffraction is that  of extension along 
the kth layer line with rapid fall in intensity away from 
the maximum value at the abrupt hth row-line dis- 
continuities which face toward the meridian (see Fig. 5). 
In reciprocal space the rotation produces from each rod 
a doughnut-like averaged layer with a central hole. 

Examination of equations (1) and (2) shows that 
with tilting (increase in 0) the layer lines are displaced, 
while the row-like discontinuities collapse toward the 
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meridian. At tilts beyond those required to collapse a 
row-line discontinuity completely to the meridian, the 
diffraction should still be observed and its position 
should follow equation (1). According to equation (2), 
the critical angle of tilt, 0r, required to complete the 
collapse ( ~  = 0) can be calculated from 

tan O r = hbo/ka o. (3) 

When an additional z axis, along which there is now 
also periodic repetition of structure, is added to those 
of the two-dimensional net one arrives at the familiar 
three-dimensional lattice whose representation in 
reciprocal space is the usual reciprocal lattice, which is 
composed of points. I t  is still possible, however, upon 
tilting t&e fiber or rotation axis to produce displace- 
ments of layer lines and the positions of individual spots 
on the layer lines. 

The derivation of equations dictating the positions 
of diffraction spots proceeds much as in the two- 
dimensional case following Fig. 6. The rotation-diagram 
coordinates, ~h~, for the spots on a row-line ellipse are 
given by 

g 

with equation (1) still valid for the layer-line co- 
ordinates. As before, the diffraction (hkl) moves toward 
the meridian during tilting to reach it at a critical tilt, 
0r, calculated from 

b o h ~ l ~ 2 h l co s f l l t "  
tan0c---k s - ~ f l  E ( ~ ) - t -  (~ )  a0 c-----~ I (5) 

While there is a similarity between equations (2) and 
(3) of the two-dimensional case, and (4) and (5) of the 
three-dimensional lattice, the former prescribe posi- 
tions and critical tilts for the most intense diffraction 
effects, and the latter indicate rigidly limited conditions 
for all diffraction. I t  may be noted also that, according 
to equation (5), meridional diffractions (0k0) should 
vanish for the slightest ~ilt (more accurately, for tilts 
departing from O=kh/2boO; el. the remarks above 
regarding limitation of equation (1) caused by neglecting 
the curvature of the sphere of reflection). 

Indeed, the most readily recognizable diffraction 
phenomenon accompanying reduction of ordered 
dimensions below three is that  of the persistence with 
displacement exhibited by each diffraction at tilts above 
its critical angle 0o. The critical tilts can be calculated 
without prior knowledge of the number of ordered axes 
or before unequivocal indices or lattice dimensions have 
been established. Both equations (3) and (5) reduce to 

tan Oc= ~0/~o, (6) 

where ~o and ~o are the angular components observed 
for the position of maximum intensity of a given 
_diffraction at zero tilt. Equation (6) is valid for one- 
dimensional systems also in the sense that  for all 
reciprocal-array disks ~o = O. 
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Several qualifications must be added to the preceding 
paragraphs. The theory for the net neglected the 
influence of the thickness of the net in the non-ordered 
direction orthogonal to the plane of the net, and in both 
net and lattice the diffraction broadening possibly 
caused by limited extension or any manner of distortion 
along axes of order was not considered. In examining 
these situations, the general principles governing 
reciprocal-array disk diameters and thicknesses will be 
fundamental in determining the volumes of reciprocal 
space over which the rod-like or spot-like intersections 
of the component reciprocal-array disks of the re- 
ciprocal net and lattice can extend. In particular, note 
that  the thickness of a diffracting net in the non-ordered 
direction orthogonal to the plane of the net determines 
the lengths of the reciprocal-net rods reciprocally. 

An unfortunate result of these qualifications to the 
theory of unlimited ideal nets and lattices is that  finite 
or distorted systems can, on occasion, simulate the 
diffraction broadening, or the equivalent relaxation of 
conditions governing angles of beam incidence, shown 
above to be characteristic of order-deficient systems. 
This is well known to occur when particle sizes of 
ordered structures are small. On the other hand, 
systems with axes lacking order may have extensions 
of these non-ordered dimensions sufficient to sharpen 
the diffraction effects. With detailed data regarding line 
shapes available these various influences might not be 
confused, but at small diffraction angles they can become 
difficult to distinguish. 

Criteria for examination of order deficiency 

I t  becomes possible on the basis of arguments given 
above to enumerate the following particulars which are 
useful in the determination of the type of order pos- 
sessed by the ultramicroscopic elements of a fibrous 
system from its diffraction effects at small angles: 

(1) Resolution. Because of the importance of the 
diffraction (layer-line and row-line) structure, it is 
necessary that  the diffraction camera be one capable of 
resolving all diffractions. The problems of camera 
construction to insure adequate resolution are con- 
sidered elsewhere (Bolduan & Bear, 1949). 

(2) Diffraction sha~oes. Truly meridional diffractions 
(h and 1 zero) will have greatest intensity directly on the 
pattern meridian, falling off abruptly along layer lines 
for three-dimensional order but less precipitously for 
lesser degrees of order. Other diffractions (h and 1 not 
both zero) will be simple and sharp for three-dimen- 
sional order; asymmetric for two-dimensional order (see 
Fig. 5); and non-existent for one-dimensional order. 

(3) Diffraction displacement with tilt. In all cases the 
layer lines change in position with tilt according to 
equation (1). However, only with diffractions of one- 
and two-dimensional systems can this equation norm- 
ally be followed experimentally much beyond the 
critical tilts given by such equations as (3) and (5), or 
more generally by equation (6). Meridional diffractions 
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are particularly useful, since with them practically the 
entire range of tilting is applicable to the demonstration 
of order deficiency. 

(4) Fibril orientation. In examples whose diffracting 
elements (fibrils) are not all perfectly aligned with the 
fiber axis, true diffraction shapes may be difficult to 
observe and the diffractions may also persist for 
appreciable tilts beyond those permitted for three- 
dimensional systems, solely because of poor orientation. 
To determine that  this persistence is spurious, and not 
related to possession of lesser order, it is sufficient to 
note that  the layer lines do not move as a function of tilt 
strictly according to equation (1). Also, at zero tilt it will 
be seen that  the individual diffractions are arcs of 
circles and not spread out straight along the layer 
lines. 

(5) Fibril thickness. The fibrils are generally so long 
in terms of b 0 translations that  layer lines are extremely 
sharp, and the major part  of an investigation becomes 
concerned with the shapes and positions of the in- 
dividual diffractions as these may be spread upon the 
layer lines. One may conclude that  this spreading, or 
the equivMent persistence with tilt, is direct evidence 
for a deficiency in axes of order only if there is reason 
to believe that  any possible ordered transverse dimen- 
sions are sufficiently large to prevent the similar 
spreading which accompanies limited extension of order. 
Conversely, the spreading evidences for axes lacking 
order may be absent when the non-ordered dimensions 
are large. Consequently, the only unequivocal demon- 
stration of the number of axes of order depends on the 
number of lattice translations in evidence, but when less 
than three of these are readily apparent it is reassuring 
to be able to secure additional evidence by showing that  
the appropriate line spreading and tilt phenomena 
exist. 

(6) Distortion. The criteria given to this point are 
applied most simply to diffracting structures whose 
extension in ordered and non-ordered directions may 
be said to be perfect. One frequently encounters im- 
perfect systems, whose effective coherently scattering 
dimensions are less than the actual fibril dimensions 
because of internal distortions of structure. The most 

general way to recognize the nature of these imperfec- 
tions is that  of studying variations of observed spot or 
line dimensions, or persistence with tilt, as functions 
of diffraction indices. General knowledge of how various 
types of imperfection influence dimensions of reciprocal- 
space disks, rods, or points then facilitates interpreta- 
tion of the data. Examples drawn from protein fibers 
will be given elsewhere. 

(7) Symmetry of diffraction patterns. Because of the 
inherent centrosymmetry of reciprocal space and the 
rotational symmetry introduced by the random rota- 
tional orientation of fibrils about a fiber axis, fiber 
diagrams obtained at zero tilt should be symmetrical 
about meridional and equatorial lines. Tilting, however, 
should destroy the pattern symmetry relative to the 
equatorial line if the curvature of the sphere of reflection 
is not negligible compared with the dimensions of the 
disks, rods and points of reciprocal space. Indeed, 
observation of the production of this type of pat tern 
asymmetry provides a sensitive test as to whether the 
sphere of reflection may be regarded as a plane of 
reflection at small diffraction angles. Because this 
simplification is usually possible most fiber patterns at  
small angles remain symmetrical relative to the equa- 
torial line even after considerable tilting of the specimen. 
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